Элементы, имеющие биологическое значение

Значение важнейших химических элементов и соединений для клетки и организма

Элементы, имеющие биологическое значение

По химическому составу клетки разных организмов могут заметно отличаться, однако состоят они из одинаковых элементов. В клетках обнаружено около 70 элементов периодической таблицы Д.И. Менделеева, но только 24 из них имеют важное значение и встречаются в живых организмах постоянно.

Макроэлементы – кислород, углеводород, водород, азот – входят в состав молекул органических веществ. К макроэлементам в последнее время относят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента.

Магний входит в состав хлорофилла; железо – гемоглобина; фосфор – костной ткани, нуклеиновых кислот; кальций – костей, черепашек моллюсков, сера – в состав белков; калий, натрий и хлор-ионы берут участие в смене потенциала клеточной мембраны.

Микроэлементы представлены в клетке сотыми и тысячными долями процента. Это цинк, медь, йод, фтор, молибден, бор и др.

Микроэлементы входят в состав ферментов, гормонов, пигментов.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0,000001%. Это уран, золото, ртуть, цезий и др.

Вода и её биологическое значение

Вода количественно занимает среди химических соединений первое место во всех клетках. В зависимости от типа клеток, их функционального состояния, вида организма и условий его нахождения её содержание в клетках существенно колеблется.

Клетки костной ткани содержат не больше 20% воды, жировой ткани – около 40%, мышечные клетки – 76%, а клетки зародыша – более 90%.

Замечание 1

В клетках любого организма с возрастом количество воды заметно уменьшается.

Отсюда – вывод, что чем выше функциональная активность организма в целом и каждой клетки отдельно тем большим в них есть содержание воды, и наоборот.

Замечание 2

Обязательным условием жизненной активности клеток является наличие воды. Она является основной частью цитоплазмы, поддерживает её структуру и стойкость коллоидов, входящих в состав цитоплазмы.

Роль воды в клетке определяется её химическими и структурными свойствами. Прежде всего это связано с небольшим размером молекул, их полярностью и способностью соединяться с помощью водородных связей.

Водородные связи образуются при участии атомов водорода, соединённых с электронегативным атомом (обычно кислородом или азотом). При этом атом Гидрогена приобретает настолько большой позитивный заряд, что может образовать новую связь с другим электронегативным атомом (кислорода или азота).

Так же связываются друг с другом молекулы воды, у которых один конец имеет позитивный заряд, а другой – негативный. Такую молекулу называют диполем.

Более электронегативный атом кислорода одной молекулы воды притягивается к позитивно заряженному атому водорода другой молекулы с образованием водородной связи.

Благодаря тому, что молекулы воды полярные и способны образовывать водородные связи, вода является совершенным растворителем для полярных веществ, которые называются гидрофильными.

Такими являются соединения ионного характера, в которых заряженные частички (ионы) диссоциируют (разделяются) в воде при растворении вещества (соли).

Такую же способность имеют и некоторые неионные соединения, в молекуле которых находятся заряженные (полярные) группы (в сахарах, аминокислотах, простых спиртах это ОН-группы). Вещества, состоящие из неполярных молекул (липиды), в воде практически нерастворимы, то есть они гидрофобы.

При переходе вещества в раствор, его структурные частички (молекулы или ионы) приобретают возможность двигаться свободнее, а, соответственно, возрастает реакционная способность вещества.

Благодаря этому вода является основной средой, где происходит большинство химических реакций.

Кроме того, все окислительно-восстановительные реакции и реакции гидролиза проходят при непосредственном участии воды.

Вода имеет наибольшую удельную теплоёмкость среди всех известных веществ. Это означает, что при существенном увеличении тепловой энергии температура воды повышается сравнительно немного. Это обусловлено использованием значительного количества этой энергии на разрыв водородных связей, которые ограничивают подвижность молекул воды.

Благодаря большой теплоёмкости вода служит защитой для тканей растений и животных от сильного и быстрого повышения температуры, а высокая теплота парообразования является основой для надёжной стабилизации температуры тела организма.

Необходимость значительного количества энергии для испарения воды вызвана тем, что между её молекулами существуют водородные связи. Эта энергия поступает из окружающей среды, потому испарение сопровождается охлаждением.

Этот процесс можно наблюдать во время потоотделения, в случае тепловой задышки у собак, важна она и в процессе охлаждения транспирирующих органов растений, особенно в пустынных условиях и в условиях сухих степей и периодов засухи в других регионах.

Вода имеет так же высокую теплопроводность, чем обеспечивается равномерное распределение тепла по организму.

Таким образом нет риска возникновения локальных «горячих точек», которые могут стать причиной повреждения элементов клеток.

Значит, высокая удельная теплоёмкость и высокая для жидкости теплопроводность делают воду идеальной средой для поддержания оптимального теплового режима организма.

Для воды характерно высокое поверхностное натяжение. Это её свойство очень важно для адсорбционных процессов, движения растворов по тканях (кровообращение, восходящее и нисходящее движение по растению и т.п.).

Вода используется как источник кислорода и водорода, которые выделяются во время световой фазы фотосинтеза.

К важным физиологическим свойствам воды относится её способность растворять газы ($O_2$, $CO_2$ и др.). Кроме того, вода как растворитель участвует в процессе осмоса, что играет важную роль в жизнедеятельности клеток и организма.

Свойства углеводорода и его биологическая роль

Если не брать во внимание воду, можно сказать, что большая часть молекул клетки принадлежит к углеводородным, так называемым органическим, соединениям.

Замечание 3

Углеводород, имея уникальные химические способности, фундаментальные для жизни, составляет её химическую основу.

Благодаря небольшому размеру и наличию на внешней оболочке четырёх электронов атом углеводорода может образовывать четыре крепких ковалентных связи с другими атомами.

Самое важное значение имеет способность атомов углеводорода соединяться друг с другом, образуя цепи, кольца и, в конце концов, скелет больших и сложных органических молекул.

К тому же углеводород легко образует ковалентные связи с другими биогенными элементами (обычно с $H, Mg, P, O, S$).

Именно этим объясняется существование астрономического количества разнообразных органических соединений, которые обеспечивают существование живых организмов во всех его проявлениях.

Разнообразие их проявляется в структуре и размерах молекул, их химических свойствах, степени насыщенности карбонового скелета и различной форме молекул, что определяется углами внутримолекулярных связей.

Биополимеры

Это высокомолекулярные (молекулярная масса 103 – 109) органические соединения, макромолекулы которых состоят из большого количества звеньев, которые повторяются, – мономеров.

К биополимерам относятся белки, нуклеиновые кислоты, полисахариды и их производные (крахмал, гликоген, целлюлоза, гемицеллюлоза, пектиновые вещества, хитин и пр.). Мономерами для них являются соответственно аминокислоты, нуклеотиды и моносахариды.

Замечание 4

Около 90% сухой массы клетки составляют биополимеры: у растений преобладают полисахариды, а у животных – белки.

Пример 1

В клетке бактерий находится около 3 тыс. видов белков и 1 тыс. нуклеиновых кислот, а у человека количество белков оценивают в 5 млн.

Биополимеры не только образуют структурную основу живых организмов, но и в процессах жизнедеятельности играют проводящую роль.

Структурной основой биополимеров являются линейные (белки, нуклеиновые кислоты, целлюлоза) или разветвлённые (гликоген) цепи.

Такая структура обусловливает ряд характерных свойств:

  • для взаимодействия биополимеров характерна кооперативность, то есть тесная взаимосвязь всех функциональных групп. Это значит, что одни группы биополимера, взаимодействуя, изменяют характер взаимодействия других его групп.Пример 2Примером такого кооперативного взаимодействия является связывание гемоглобином – белком эритроцитов крови – молекул кислорода в процессе дыхания.
  • Полимеры имеют способность образовывать интерполимерные комплексы, возникающие между отдельными частями молекулы или между различными молекулами.

Замечание 5

Все основные биологические процессы в организме – биосинтез белков и нуклеиновых кислот, имунные реакции, реакции обмена веществ – и осуществляются благодаря образованию биополимерных комплексов и другим свойствам биополимеров.

Источник: https://spravochnick.ru/biologiya/znachenie_vazhneyshih_himicheskih_elementov_i_soedineniy_dlya_kletki_i_organizma/

Химические элементы клетки. Вода и другие неорганические соединения | Учеба-Легко.РФ – крупнейший портал по учебе

Элементы, имеющие биологическое значение

Биология — наука о жизни. Важнейшая задача биологии — изучение многообразия, строения, жизнедеятельности, индивидуального развития и эволюции живых организмов, их взаимоотношений со средой обитания.

Живые организмы имеют ряд особенностей, отличающих их от неживой природы. По отдельности каждое из отличий достаточно условно, поэтому их следует рассматривать в комплексе.

Признаки, отличающие живую материю от неживой:

  1. способность к размножению и передаче наследственной информации следующему поколению;
  2. обмен веществ и энергии;
  3. возбудимость;
  4. адаптированность к конкретным условиям обитания;
  5. строительный материал — биополимеры (важнейшие из них — белки и нуклеиновые кислоты);
  6. специализация от молекул до органов и высокая степень их организации;
  7. рост;
  8. старение;
  9. смерть.

Уровни организации живой материи:

  1. молекулярный,
  2. клеточный,
  3. тканевой,
  4. органный,
  5. организменный,
  6. популяционно-видовой,
  7. биогеоценотический,
  8. биосферный.

Многообразие жизни

Живые организмы, имеющие клеточное строение, подразделяются на две группы: 1) прокариоты (отсутствует структурно оформленное ядро), 2) эукариоты (имеется структурно оформленное ядро).

К прокариотам относятся бактерии, к эукариотам — растения, животные, грибы.

Кроме выше перечисленных, существует группа организмов, не имеющих клеточного строения, — вирусы, которые могут размножаться, только паразитируя или в прокариотических, или в эукариотических клетках.

Первыми на нашей планете появились безъядерные клетки. Большинством ученых принимается, что ядерные организмы появились в результате симбиоза древних архебактерий с синезелеными водорослями и бактериями-окислителями (теория симбиогенеза).

Цитология

Цитология — наука о клетке. Изучает строение и функции клеток одноклеточных и многоклеточных организмов.

Клетка является элементарной единицей строения, функционирования, роста и развития всех живых существ.

Поэтому процессы и закономерности, характерные для цитологии, лежат в основе процессов, изучаемых многими другими науками (анатомия, генетика, эмбриология, биохимия и др.).

Химические элементы клетки

Химический элемент — определенный вид атомов с одинаковым положительным зарядом ядра. В клетках обнаружено около 80 химических элементов.

Их можно разделить на четыре группы: 1 группа — углерод, водород, кислород, азот (98% от содержимого клетки), 2 группа — калий, натрий, кальций, магний, сера, фосфор, хлор, железо (1,9%), 3 группа — цинк, медь, фтор, йод, кобальт, молибден и др. (меньше 0,01%),

4 группа — золото, уран, радий и др. (меньше 0,00001%).

Элементы первой и второй групп в большинстве пособий называют макроэлементами, элементы третьей группы — микроэлементами, элементы четвертой группы — ультрамикроэлементами. Для макро- и микроэлементов выяснены процессы и функции, в которых они участвуют. Для большинства ультрамикроэлементов биологическая роль не выявлена.

Атомы химических элементов в живых организмах образуют неорганические (вода, соли) и органические соединения (белки, нуклеиновые кислоты, липиды, углеводы). На атомном уровне различий между живой и неживой материей нет, различия появятся на следующих, более высоких, уровнях организации живой материи.

Вода

Вода — самое распространенное неорганическое соединение. воды составляет от 10% (зубная эмаль) до 90% массы клетки (развивающийся эмбрион). Без воды жизнь невозможна, биологическое значение воды определяется ее химическими и физическими свойствами.

Молекула воды имеет угловую форму: атомы водорода по отношению к кислороду образуют угол, равный 104,5°. Та часть молекулы, где находится водород, заряжена положительно, часть, где находится кислород, — отрицательно, в связи с этим молекула воды является диполем.

Между диполями воды образуются водородные связи. Физические свойства воды: прозрачна, максимальная плотность — при 4 °С, высокая теплоемкость, практически не сжимается; чистая вода плохо проводит тепло и электричество, замерзает при 0 °С, кипит при 100 °С и т.д.

Химические свойства воды: хороший растворитель, образует гидраты, вступает в реакции гидролитического разложения, взаимодействует со многими оксидами и т.д.

По отношению к способности растворяться в воде различают: гидрофильные вещества — хорошо растворимые, гидрофобные вещества — практически нерастворимые в воде.

Биологическое значение воды:

  1. является основой внутренней и внутриклеточной среды,
  2. обеспечивает поддержание пространственной структуры,
  3. обеспечивает транспорт веществ,
  4. гидратирует полярные молекулы,
  5. служит растворителем и средой для диффузии,
  6. участвует в реакциях фотосинтеза и гидролиза,
  7. способствует охлаждению организма,
  8. является средой обитания для многих организмов,
  9. способствует миграциям и распространению семян, плодов, личиночных стадий,
  10. является средой, в которой происходит оплодотворение,
  11. у растений обеспечивает транспирацию и прорастание семян,
  12. способствует равномерному распределению тепла в организме и мн. др.

Другие неорганические соединения представлены в основном солями, которые могут содержаться или в растворенном виде (диссоциированными на катионы и анионы), или твердом. Важное значение для жизнедеятельности клетки имеют катионы K+, Na+, Ca2+, Mg2+ (см. таблицу выше) и анионы HPO42—, Cl—, HCO3—, обеспечивающие буферные свойства клетки. Буферность — способность поддерживать рН на определенном уровне (рН — десятичный логарифм величины, обратной концентрации водородных ионов). Величина рН, равная 7,0, соответствует нейтральному, ниже 7,0 — кислому, выше 7,0 — щелочному раствору. Для клеток и тканей характерна слабощелочная среда. За поддержание этой слабощелочной реакции отвечают фосфатная (1) и бикарбонатная (2) буферные системы:

В твердом нерастворенном состоянии находятся в костной ткани, в раковинах моллюсков карбонаты и фосфаты кальция и магния, в зубной эмали — фторид кальция и т.д.

Источник: http://uclg.ru/education/biologiya/9_klass/strukturnaya_organizatsiya_jivyih_organizmov/himicheskaya_organizatsiya_kletki/lecture_himicheskie_elementyi_kletki__voda_i_drugie_neorganicheskie_soedineniya.html

2.2 Химический состав клетки

Элементы, имеющие биологическое значение

Вопрос 1. В чем заключается сходство биологи­ческих систем и объектов неживой природы?

Основное сходство — это родство химиче­ского состава. Подавляющее большинство из­вестных на сегодняшний день химических элементов обнаружено как в живых организ­мах, так и в неживой природе.

Атомов, харак­терных только для живых систем, не сущест­вует. Однако содержание конкретных элемен­тов в живой и неживой природе резко различается.

Организмы (от бактерий до по­звоночных) способны избирательно накапли­вать элементы, которые необходимы для жиз­недеятельности.

Интересно, что неживые объекты могут проявлять отдельные свойства, более харак­терные для живого. Так, кристаллы минера­лов способны к росту и обмену веществ с окру­жающей средой, а фосфор может «запасать» энергию света. Но всей совокупностью черт, присущих живому организму, не обладает ни одна неорганическая система.

Вопрос 2. Перечислите биоэлементы и объяс­ните, каково их значение в образовании живой ма­терии.

К биоэлементам (органогенам) относят кис­лород, углерод, водород, азот, фосфор и серу. Они составляют основу белков, липидов, угле­водов, нуклеиновых кислот и других органи­ческих веществ. Для всех органических моле­кул особое значение имеют атомы углерода, образующие каркас.

К этому каркасу присо­единяются разнообразные химические груп­пы, образованные другими биоэлементами. В зависимости от состава и расположения та­ких групп органические молекулы приобрета­ют индивидуальные свойства и функции.

На­пример, аминокислоты в большом количестве содержат азот, а нуклеиновые кислоты — фос­фор.

Вопрос 3. Что такое микроэлементы? Приведи­те примеры и охарактеризуйте биологическое зна­чение этих элементов.

Многие химические элементы содержатся в живых системах в очень малых количествах (доли процента от общей массы). Такие веще­ства называют микроэлементами. В их числе медь, марганец, цинк, молибден, кобальт, иод, бром, фтор и многие другие. Растения, грибы, бактерии получают микроэлементы из почвы и воды; животные — в основном с пи­щей.

В большинстве своем микроэлементы входят в состав белков и биологически актив­ных веществ (гормонов, витаминов). Напри­мер, цинк содержится в гормоне поджелудоч­ной железы инсулине, а иод — в тироксине (гормоне щитовидной железы). Кобальт явля­ется важнейшей составной частью витамина В12.

Железо входит в состав примерно семиде­сяти белков организма, медь — в состав двад­цати белков и т. д.

Вопрос 4. Как отразится на жизнедеятельности клетки и организма недостаток какого-либо микро­элемента? Приведите примеры таких явлений.

Недостаток какого-либо микроэлемента приводит к уменьшению синтеза того органи­ческого вещества, в состав которого этот мик­роэлемент входит. В результате нарушаются процессы роста, обмена веществ, воспроизве­дения и т. п.

Например, дефицит иода в пище приводит к общему падению активности орга­низма и разрастанию щитовидной железы — эндемическому зобу. Недостаток бора вызыва­ет отмирание верхушечных почек у растений. Нехватка селена может привести к возникно­вению раковых заболеваний у человека и жи­вотных.

По аналогии с авитаминозами такие заболевания называют микроэлементозами.

Вопрос 5. Расскажите об ультрамикроэлемен­тах. Каково их содержание в организме? Что извест­но об их роли в живых организмах?

Ультрамикроэлементы — это элемен­ты, которые содержатся в клетке в ничтожно малых количествах (концентрация каждого не превышает одной миллионной доли процента). К ним относят уран, радий, золото, серебро, ртуть, бериллий, мышьяк и др.

Физиологиче­ская роль большинства из них не установлена. Не исключено, что она вообще отсутствует, и тогда часть ультрамикроэлементов являются просто примесями живых организмов.

Вместе с тем, например, известно, что мышьяк входит в состав ферментов, защищающих мембраны наших клеток от окисления, и необходим для их нормальной работы.

Вопрос 6. Приведите примеры известных вам биохимических эндемий. Объясните причины их происхождения.

Биохимические эндемии — это заболева­ния растений, животных и человека, связан­ные с явным недостатком либо избытком какого-либо химического элемента в окру­жающей среде. В результате развиваются микроэлементозы или некоторые другие наруше­ния.

Так, во многих районах нашей страны значительно снижено количество иода в воде и почве. Нехватка иода приводит к падению синтеза гормона тироксина, щитовидная же­леза, пытаясь компенсировать его нехватку, разрастается (развивается эндемический зоб).

Другими примерами могут служить дефицит селена в почве ряда районов Монголии, а так­же избыток ртути в воде некоторых горных рек Чили и Цейлона.

На этой странице искали :

  • в чем заключается сходство биологических систем и объектов неживой природы
  • перечислите биоэлементы и объясните каково их значение в образовании живой материи
  • приведите примеры известных вам биохимических эндемий
  • перечислите биоэлементы и объясните каково их значение
  • что такое биохимические эндемии и каковы причины их происхождения

Сохрани к себе на стену!

Источник: http://vsesochineniya.ru/2-2-ximicheskij-sostav-kletki.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.