Нервная клетка

Как устроена нервная клетка? Клетки нервной системы

Нервная клетка

Человеческий организм состоит из триллионов клеток, один только мозг содержит примерно 100 миллиардов нейронов, самых разных форм и размеров. Возникает вопрос, а как устроена нервная клетка, и чем она отличается от других клеток организма?

Устройство нервной клетки человека

Как большинство других клеток человеческого тела, нервные клетки имеют ядра. Но по сравнению с остальными, они являются уникальными, так как у них есть длинные, нитевидные ответвления, по которым передаются нервные импульсы.

Клетки нервной системы похожи на другие, так как также окружены клеточной мембраной, имеют ядра, содержащие гены, цитоплазму, митохондрии и другие органеллы. Они участвуют в таких фундаментальных клеточных процессах, как синтез белка и выработка энергии.

Нейроны и нервные импульсы

Нервная система состоит из нервов. Нерв – это пучок нервных клеток. Нервная клетка, передающая определенную информацию, называется нейрон. Данные, которые переносят нейроны, называются нервными импульсами. Подобно электрическим импульсам, они переносят информацию с невероятной скоростью.

Быструю передачу сигналов обеспечивают аксоны нейронов, покрытые специальной миелиновой оболочкой.

Эта оболочка покрывает аксон подобно пластиковому покрытию на электрических проводах и позволяет нервным импульсам перемещаться быстрее. Что представляет собой нейрон? Он имеет особую форму, которая позволяет передать сигнал от одной клетки к другой.

Нейрон состоит из трех основных частей: тела клетки, множества дендритов и одного аксона.

Типы нейронов

Нейроны обычно классифицируются на основании той роли, которую они играют в организме. Известны два основных типа нейронов – сенсорные и моторные. Сенсорные нейроны проводят нервные импульсы от органов чувств и внутренних органов в центральную нервную систему (ЦНС). Моторные нейроны, наоборот, несут нервные импульсы от ЦНС к органам, железам и мышцам.

Клетки нервной системы устроены таким образом, что оба типа нейронов работают сообща. Сенсорные нейроны несут информацию о внутренней и внешней среде. Эти данные используются для отправки сигналов через моторные нейроны, чтобы сообщить организму, как ему стоит реагировать на полученную информацию.

Синапс

Место, где аксон одного нейрона отвечает дендритам другого, называется синапсом. Нейроны связываются друг с другом посредством электрохимического процесса. При этом в реакцию вступают химические вещества, которые называются нейротрансмиттерами.

Тело клетки

Устройство нервной клетки предполагает наличие в теле клетки ядра и других органелл. Дендриты и аксоны, подключенные к телу клетки, напоминают лучи, исходящие от солнца. Дендриты получают импульсы от других нервных клеток. Аксоны передают нервные импульсы к другим клеткам.

Один нейрон может иметь тысячи дендритов, поэтому он может общаться с тысячами других клеток. Аксон покрыт миелиновой оболочкой – жировым слоем, который его изолирует и позволяет передавать сигнал намного быстрее.

Митохондрии

Отвечая на вопрос, как устроена нервная клетка, важно отметить элемент, отвечающий за поставку метаболической энергии, которая затем может легко утилизироваться. В этом процессе первостепенную роль играют митохондрии. Эти органеллы имеют собственную наружную и внутреннюю мембрану.

Основным источником энергии для нервной системы является глюкоза. Митохондрии содержат ферменты, необходимые для преобразования глюкозы в макроэргические соединения, главным образом в молекулы аденозинтрифосфата (АТФ), которые затем могут транспортироваться в другие районы тела, которые нуждаются в их энергии.

Ядро

Сложный процесс синтеза белка начинается в ядре клетки. Ядро нейрона содержит генетическую информацию, которая хранится в виде закодированных строк дезоксирибонуклеиновой кислоты (ДНК). Каждая молекула ДНК содержит генетические коды для всех клеток в организме.

Именно в ядре начинается процесс построения белковых молекул, путем написания соответствующей части кода ДНК на комплементарных молекулах рибонуклеиновой кислоты (РНК).

Выпущенные из ядра в межклеточную жидкость, они запускают процесс синтеза белка, в котором также принимают участие так называемые ядрышки.

Это отдельная структура внутри ядра, отвечающая за построение молекулярных комплексов, называемых рибосомами, которые участвуют в синтезе белка.

Знаете ли вы, как устроена нервная клетка?

Нейроны – это самые живучие и длинные клетки в организме! Некоторые из них сохраняются в человеческом теле в течение всей жизни. Другие клетки умирают, их заменяют новые, а вот многие нейроны замене не подлежат.

С возрастом их становится все меньше. Отсюда и пошло выражение о том, что нервные клетки не восстанавливаются. Однако данные исследований конца 20 века доказывают обратное.

В одной из областей мозга, гиппокампе, новые нейроны могут вырасти даже у взрослых людей.

Нейроны могут быть довольно большими и составлять в длину несколько метров (кортикоспинальные и афферентные). В 1898 году известный специалист по нервной системе Камилло Гольджи сообщил о своем открытии – лентовидном аппарате, специализирующимся на нейронах в мозжечке. Этот прибор теперь носит имя своего создателя и известен как «аппарат Гольджи».

Из того, как устроена нервная клетка, следует ее определение как основного структурно-функционального элемента нервной системы, изучение простых принципов которой может служить ключом к решению многих проблем. В основном это касается автономной нервной системы, которая включает в себя сотни миллионов связанных между собой клеток.

Источник: http://fb.ru/article/204363/kak-ustroena-nervnaya-kletka-kletki-nervnoy-sistemyi

Нейроны головного мозга – строение, классификация и проводящие пути

Нервная клетка

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно).

Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга.

Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию.

Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества.

Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе.

Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз).

За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба.

Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому.

Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении.

Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности.

Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов.

Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика.

Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза, где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – борозды Роланда, а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже.

Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки.

Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма.

Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения.

Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения.

На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс.

На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель.

На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели.

Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению.

Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов.

Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга.

Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты.

Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем.

В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия.

Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга.

Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы.

Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление).

Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга.

Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга.

Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток.

В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».

Источник: https://sortmozg.com/structure/nejrony-golovnogo-mozga

Нейроны головного мозга

Нервная клетка

Нервная система человека осуществляет прием и анализ информации, реагирует на внутренние и внешние воздействия, регулирует всю деятельность организма. Все это становится возможным благодаря специальным клеткам – нейронам, имеющим сложную структуру. Также они имеют еще одно название – нейроциты.

В этой статье расскажем, что такое нейрон, какие функции он выполняет, как различаются между собой эти клетки.

Составляющие клетки

Нейрон состоит из:

  • сомы (с диаметром 3–100 мкм);
  • ответвлений.

Строение тела (сомы) предполагает ядро и цитоплазму, содержащую органеллы (участвующие в синтезе протеинов).

Снаружи оно покрыто оболочкой из двух липидных слоев, которые пропускают жирорастворимые вещества.

На поверхности располагаются протеины, необходимые для того, чтобы нейрон мог воспринимать раздражение. Саму оболочку также пронизывают белки – интегральные – они формируют ионные каналы.

В нервной клетке располагается цитоскелет, состоящий из нейрофибрилл. В его функции входит поддержка формы нейрона, а по его нитям перемещаются органеллы и нейромедиаторы.

Нейроны объединяются в отдельные группы, ансамбли, центры, ядра – по наличию той единой деятельности, которую они выполняют. В коре полушарий, мозжечке нервные клетки образуют слои, каждый из которых подчинен выполнению определенной функции.

Между нейронами находятся скопления глиальных клеток (нейроглия/ глия). Они составляют примерно 40% всего объема головного мозга. Такие клетки в 3–4 раза меньше нервных. У человека с возрастом происходит процесс замещения нейронов глией.

Аксон

Является длинным выростом цитоплазмы. По нему сигналы следуют от тела к органам и другим нейронам. Диаметр его составляет несколько микронов, а длина у человека составляет несколько десятков сантиметров. Рост зависит от сомы: при повреждении периферические его части могут отмирать, а основная продолжает функционировать.

Строение аксоплазмы (аксональной протоплазмы) предполагает наличие нейрофибрилл (осуществляющих опорные и дренажные функции нейронов), микротрубочек (структур из белка), митохондрий и эндоплазматической сети.

У человека аксоны покрыты миелиновой (мякотной) оболочкой и образуют мякотные нервные волокна. В такой оболочке находятся олигодендроциты, между которыми существуют небольшие части, освобожденные от нее. На них возникает потенциал действия.

Импульс способен распространяться по мякотным волокнам ступенчато – благодаря этому повышается скорость распространения информации.

Дендриты

Короткие и разветвленные отростки. Эти части нейрона являются основными для образования синапсов, которые влияют на нейрон и передают возбуждение к соме. Дендриты, в отличие от аксонов, не обладают миелиновой оболочкой.

То, сколько входных сигналов получает нервная клетка, зависит от разветвленности дендритной сети и ее сложной структуры.

Основные функции дендритов заключаются в увеличении поверхности для синапсов, что дает возможность интеграции большого количества информации, поступающей к нервной клетке.

Кроме того, они способны генерировать потенциалы действия, воздействовать на возникновение таких потенциалов в аксонах.

Передача импульса идет от дендрита или сомы к аксону. После того, как потенциал действия сгенерирован, он передается от начальной аксональной части обратно к дендритам. Когда аксон сочленяется с сомой последующего нейрона, контакт называют аксо-соматическим. Если с дендритами – аксо-дендритический, а с аксоном другого нейрона – аксо-аксональный.

Строение аксонов подразумевает наличие терминалей – так называемых концевых отделов. Они ветвятся и входят в контакт с другими клетками в организме (мышечными, железистыми и т. п.).

У аксона имеется синаптическое окончание – часть, которая контактирует с клеткой-мишенью.

Постсинаптическая оболочка такой клетки совместно с синаптическим окончанием формирует синапс, посредством которого передается возбуждение и благодаря которому осуществляется взаимодействие клеток между собой.

Сколько связей способен установить один нейрон? Одна нервная клетка, обладающая возможностью взаимодействовать, может осуществлять 20 000 связей.

Какие бывают нейроны

Существуют различные классификации.

Распространена классификация по числу количества отростков, их расположению.

  1. Мультиполярные нейроны – наиболее многочисленны в ЦНС. Это клетки с одним аксоном и несколькими дендритами.
  2. Биполярные нейроны головного мозга – такие клетки, у которых в наличии по одному аксону и дендриту. Расположены в глазной сетчатке, обонятельной эпителиальной ткани и луковице, слуховом ядре и вестибулярном.

В спинном мозге встречаются и другие виды (безаксонные, псевдоуниполярные).

Ученые выносят отдельно зеркальные нейроны.

Это клетки, в которых возбуждение происходит не только при выполнении действия, но и при наблюдении за его выполнением у другого (эксперименты проводились пока лишь на животных).

Изучение деятельности этих клеток является перспективным направлением в биологии: считается, что они являются основными в процессе обучения языку, понимании действий и эмоций другого человека.

В зависимости от функции, клетки делятся на:

  • афферентные;
  • эфферентные;
  • вставочные.

Отдельно отмечаются также секреторные, функции которых заключаются в продуцировании нейрогормонов (к примеру, в гипоталамо-гипофизарной системе).

Афферентные

Отвечают за передачу сигналов от рецепторов в ЦНС, бывают первичные и вторичные. Расположение тел первых – в спинальных ядрах. Они непосредственно связаны с рецепторами.

Сомы вторичных нейронов расположены в зрительных буграх и ответственны за передачу сигнала в отделы, лежащие выше. Напрямую такие нейроны с рецепторами не связаны, а получают импульсы от других нейроцитов.

Нейрон, относящийся к этой группе, также могут называть – чувствительный, сенсорный, рецепторный.

Реакция клетки проходит 5 стадий:

  1. трансформация импульса внешнего раздражения;
  2. генерирование чувствительного потенциала;
  3. его иррадиация по нервной клетке;
  4. появление генераторного потенциала;
  5. генерирование нервного сигнала.

Двигательные

Эфферентные (двигательные, моторные, центробежные) передают импульс к остальным органам и центрам. Например, нервные клетки двигательной зоны конечного мозга – пирамидные – посылают сигнал мотонейронам спинного мозга.

особенность двигательных нейронов – аксон с большой протяженностью, который обладает высокой скоростью передачи возбуждения. Эфферентные нервные клетки разных отделов мозговой коры связывают между собой эти отделы.

Эти нейронные связи обеспечивают такие внутриполушарные и межполушарные отношения, которые отвечают за функционирование мозга в процессе обучения, распознавания объектов, утомляемости и т. п.

Выделяют преганглионарные и постганглионарные двигательные нейроны вегетативной нервной системы.

Преганглионарные нейроны симпатического отдела расположены в спинном мозге, а парасимпатического – в среднем и продолговатом мозге. Постганглионарные находятся в стенках иннервируемых органах и нервных узлах.

Преганглионарные аксоны (в составе нескольких черепных нервов) образуют синапсы с постагнглионарными нейронами.

Интернейроны

Вставочные нейроциты (ассоциативные, промежуточные, интернейроны) осуществляют взаимодействие между клетками: обрабатывают информацию, которую получают от чувствительных нейронов, отправляют ее к другим промежуточным или двигательным нейронам. Они меньше по разме­рам, чем эфферентные или афферентные, могут быть веретенообразными, звездчатыми, корзинчатыми. Их аксоны короткие, а дендритная сеть обширна.

Это самые распространенные клетки в нервной системе (примерно 95%) и головного мозга, в частности (большая часть всех нейронов больших полушарий – вставочные). Терминали их аксонов заканчиваются на нервных клетках своего центра, что обеспечивает их интеграцию.

Один вид ассоциативных нейроцитов получает информацию от других центров, после чего распространяет ее на клетки своего центра. То, сколько параллельных путей задействовано в передаче сигнала, влияет на время сохранения информации в центре и усиление влияния импульса.

Другие вставочные нейроциты получают сигнал от моторных собственного центра, после чего отсылают его назад в свой же центр. Таким образом, образуются обратные связи, которые позволяют продолжительно сохранять информацию.

Тормозные промежуточные приходят в возбуждение посредством прямых импульсов, которые поступают в их центр, или сигналов, следующих из этого же центра по обратным связям.

У человека и высших животных миелиновая мембрана и совершенный метаболизм обеспечивают незатухающее возбуждение по нервным волокнам. Безмиелиновые оболочки не могут обеспечить скорую компенсацию энергетического расхода на возбуждение, поэтому распространение сигнала идет, ослабевая. Это характерно для животных с низкоорганизованной нервной системой.

Как видно, непосредственными нервными клетками, которые локализованы в головном мозге, являются интернейроны, а остальные (двигательные, в том числе преганглионарные, постганглионарные, и чувствительные первичные и вторичные) регулируют деятельность мозга вне его самого.

Нейрон является структурной единицей нервной системы и, в частности, головного мозга. Сложное строение нервной клетки обеспечивает прием, анализ и посыл информации.

Между нейронами существуют тесные связи, которые обеспечивают слаженную работу всего механизма системы.

Самыми многочисленными в головном мозге являются промежуточные (выделенные по функциональным особенностям) и мультиполярные нейроны (по строению). 

Оцените эту статью:

Всего : 199

4 199

Источник: https://mozgius.ru/stroenie/nejrony-mozga.html

Нервная клетка

Нервная клетка

Основные типы нервных клеток: 1— звёздчатые; 2 — веретенообразные 3 — пирамидные.

Нервная система состоит из клеток. Эти клетки, в отличие от других, имеют длинные щупальца, или отростки. Одни из таких клеток похожи на звездочки с многочисленными ветвистыми лучами, а другие — на треугольники с тремя главными отростками.

Отростки в свою очередь распадаются на мелкие веточки. Первые клетки ученые назвали звёздчатыми, вторые — пирамидными. Наряду со звёздчатыми и пирамидными клетками в нервной системе есть много клеток веретенообразной и совсем неправильной формы.

Если внимательно рассматривать их под микроскопом, то можно увидеть, что отходящие от тела нервных клеток отростки бывают двух родов. Одни сравнительно короткие, ветвистые и покрыты многочисленными придатками, или шипиками.

За ветвистость их назвали дендритами (от греческого слова «дендрон» — дерево). Дендриты с их шипиками и являются воспринимающим аппаратом нервной клетки.

Они воспринимают несущиеся к нервной клетке по многочисленным волокнам импульсы (возбуждения).

Другие отростки нервных клеток длинные, тонкие, гладкие и дают мало ветвей. Их назвали нейритами или аксонами. Некоторые клетки мозга дают такие длинные аксоны, что они могут тянуться на 70—80 см от тела клетки. Если такую клетку увеличить до размеров спичечной коробки, то ее отросток протянется на полкилометра. Каждая нервная клетка имеет только один аксон.

Эти чудесные отростки передают импульсы от нервной клетки к другим клеткам нервной системы или к каким-нибудь органам (мышцам, железам, кровеносным сосудам).

Таким образом, нервная клетка состоит из трех частей: тела, дендритов и аксона.

Клетка со всеми отростками называется нейроном.

Пирамидная клетка коры мозга:
1 — тело; 2—дендрит; з — аксон; 4— разветвления аксона; 5—разветвления дендрита.

Дендриты, аксоны, сами тела клеток очень разнообразны по величине и различны в разных отделах нервной системы. Есть клетки, величина которых всего 5—6 мк, а есть клетки-гиганты — до 100—150 мк. Различную величину имеют и волокна, отходящие от этих клеток.

Как же работают эти разнообразные по форме и величине клетки? Что такое нервный импульс?

О чем рассказала лапка лягушки

Еще до конца XVIII в. большинство ученых считали нервы полыми трубочками, по которым течет легкая жидкость — «жизненный дух». Теперь мы знаем, что нервы — это пучки отростков нервных клеток и никакой полости внутри у них нет. Они состоят из студенистого вещества с очень сложным химическим составом.

Итальянский ученый XVIII в. Л. Гальвани очень интересовался влиянием электричества на ткани животных и произвел ряд опытов с лапкой лягушки. Сначала ученый показал, что лапка лягушки сокращается под действием грозовых разрядов электричества.

Он подвешивал лапку к металлическому крючку и подводил к нему ток от молниеотвода. Всякий раз, когда поблизости была гроза или просто проходили грозовые облака, лапка сокращалась. Следующий опыт Гальвани был еще более интересным.

На медных крючках он подвешивал лапки лягушек на железную ограду своего балкона. Лапки покачивались на ветру и время от времени касались железных прутьев балкона. При таких прикосновениях мышцы лапок тотчас же сокращались.

Гальвани считал, что мышцы сокращаются под влиянием животного электричества, которое рождается в нервах, а медная и железная проволоки — это только замыкающие цепь проводники.

Вскоре не менее известный ученый А. Вольта повторил опыт Гальвани, но пришел к совершенно другому выводу.

Он показал, что соприкосновение меди и железа дает электрический элемент, а лапка лягушки сокращается под влиянием тока, возникающего в этом элементе.

Но Гальвани также оказался прав, так как дальнейшие исследования показали, что нервный импульс обязательно сопровождается электрическим разрядом.

Можно ли измерить скорость нервного импульса

Клетка коры мозжечка:
1 — аксон 2 — дендриты; 3 — разветвления дендритов.

Крупнейший немецкий естествоиспытатель Г. Гельмгольц в середине XIX в. нашел очень простой способ измерения скорости нервных процессов. Оказалось, что она не очень велика. Так, по нерву лягушки импульс движется со скоростью 30 м/сек, а по нервам человека — до 120 м/сек.

Уже одно это говорило, что нервный импульс не обычный электрический ток, а гораздо более сложный процесс. Нервы — это ведь не металлические провода, а полужидкие тяжи протоплазмы — живого вещества с очень сложным строением. Поэтому и ток должен быть особым — гальваническим.

В металлах и других проводниках ток переносят электроны, а в жидкостях — ионы. Значит, и в нерве происходит передвижение ионов. Кроме физического процесса передвижения ионов, в нерве идут и сложные химические превращения веществ.

Нерв не пассивный проводник тока, а живая ткань, в которой идет непрерывный обмен веществ.

Английскому ученому Гиллу удалось установить, что при прохождении импульса по нерву в нем на миллионные доли градуса повышается температура. А это значит, что в нерве начинают более интенсивно идти процессы обмена веществ.

Таким образом, электрические явления представляют собой только одно из проявлений нервного процесса.

Но дело не только в этом. Гальванический ток не распространяется на большие расстояния, а нервный импульс распространяется. Что же происходит? Оказывается, когда волна возбуждения проходит по нерву, то в нем образуется подвижный гальванический элемент.

А в любом гальваническом элементе (в обычной батарейке карманного фонарика) есть два полюса: положительный и отрицательный. В нерве также есть два полюса: положительный (наружная часть нерва — одевающая его тонкая мембрана) и отрицательный (внутренняя часть нерва).

Стоит только внешнему импульсу нарушить проницаемость мембраны, как ток начинает идти от внешней части нерва к внутренней. Этот местный ток нарушает проницаемость соседних участков мембраны, и волна возбуждения направляется дальше.

В то же время в начальных участках пути мембрана уже восстановила свою целостность и готова к приему новой волны возбуждения. Значит, в нерве ток идет не сплошным потоком, а отдельными порциями.

Движение импульса по нерву напоминает действие запального шнура. Продвижение пламени по шнуру разогревает последующие его участки и заставляет их вспыхивать; так и в нерве: один участок за другим испытывает электрические и химические превращения.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://de-ussr.ru/chelovek/organizm/nervnaya-kletka.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть